15,437 research outputs found

    The uniqueness of the invariant polarisation-tensor field for spin-1 particles in storage rings

    Full text link
    We argue that the invariant tensor field introduced in [1] is unique under the condition that the invariant spin field is unique, and thereby complete that part of the discussion in that paper.Comment: 8 page

    From linear to non-linear scales: analytical and numerical predictions for the weak lensing convergence

    Full text link
    Weak lensing convergence can be used directly to map and probe the dark mass distribution in the universe. Building on earlier studies, we recall how the statistics of the convergence field are related to the statistics of the underlying mass distribution, in particular to the many-body density correlations. We describe two model-independent approximations which provide two simple methods to compute the probability distribution function, pdf, of the convergence. We apply one of these to the case where the density field can be described by a log-normal pdf. Next, we discuss two hierarchical models for the high-order correlations which allow one to perform exact calculations and evaluate the previous approximations in such specific cases. Finally, we apply these methods to a very simple model for the evolution of the density field from linear to highly non-linear scales. Comparisons with the results obtained from numerical simulations, obtained from a number of different realizations, show excellent agreement with our theoretical predictions. We have probed various angular scales in the numerical work and considered sources at 14 different redshifts in each of two different cosmological scenarios, an open cosmology and a flat cosmology with non-zero cosmological constant. Our simulation technique employs computations of the full 3-d shear matrices along the line of sight from the source redshift to the observer and is complementary to more popular ray-tracing algorithms. Our results therefore provide a valuable cross-check for such complementary simulation techniques, as well as for our simple analytical model, from the linear to the highly non-linear regime.Comment: 20 pages, final version published in MNRA

    Quasiperiodic spin-orbit motion and spin tunes in storage rings

    Get PDF
    We present an in-depth analysis of the concept of spin precession frequency for integrable orbital motion in storage rings. Spin motion on the periodic closed orbit of a storage ring can be analyzed in terms of the Floquet theorem for equations of motion with periodic parameters and a spin precession frequency emerges in a Floquet exponent as an additional frequency of the system. To define a spin precession frequency on nonperiodic synchro-betatron orbits we exploit the important concept of quasiperiodicity. This allows a generalization of the Floquet theorem so that a spin precession frequency can be defined in this case too. This frequency appears in a Floquet-like exponent as an additional frequency in the system in analogy with the case of motion on the closed orbit. These circumstances lead naturally to the definition of the uniform precession rate and a definition of spin tune. A spin tune is a uniform precession rate obtained when certain conditions are fulfilled. Having defined spin tune we define spin-orbit resonance on synchro--betatron orbits and examine its consequences. We give conditions for the existence of uniform precession rates and spin tunes (e.g. where small divisors are controlled by applying a Diophantine condition) and illustrate the various aspects of our description with several examples. The formalism also suggests the use of spectral analysis to ``measure'' spin tune during computer simulations of spin motion on synchro-betatron orbits.Comment: 62 pages, 1 figure. A slight extension of the published versio

    Two-component radiation model of the sonoluminescing bubble

    Full text link
    Based on the experimental data from Weninger, Putterman & Barber, Phys. Rev. (E), 54, R2205 (1996), we offer an alternative interpretation of their experimetal results. A model of sonoluminescing bubble which proposes that the electromagnetic radiation originates from two sources: the isotropic black body or bramsstrahlung emitting core and dipole radiation-emitting shell of accelerated electrons driven by the liquid-bubble interface is outlined.Comment: 5 pages Revtex, submitted to Phys. Rev.

    A New and Unifying Approach to Spin Dynamics and Beam Polarization in Storage Rings

    Full text link
    With this paper we extend our studies [1] on polarized beams by distilling tools from the theory of principal bundles. Four major theorems are presented, one which ties invariant fields with the notion of normal form, one which allows one to compare different invariant fields, and two that relate the existence of invariant fields to the existence of certain invariant sets and relations between them. We then apply the theory to the dynamics of spin-1/2 and spin-1 particles and their density matrices describing statistically the particle-spin content of bunches. Our approach thus unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics. This unifying aspect of our approach relates the examples elegantly and uncovers relations between the various underlying dynamical systems in a transparent way

    An Informal Summary of a New Formalism for Classifying Spin-Orbit Systems Using Tools Distilled from the Theory of Bundles

    Full text link
    We give an informal summary of ongoing work which uses tools distilled from the theory of fibre bundles to classify and connect invariant fields associated with spin motion in storage rings. We mention four major theorems. One ties invariant fields with the notion of normal form, the second allows comparison of different invariant fields and the two others tie the existence of invariant fields to the existence of certain invariant sets. We explain how the theorems apply to the spin dynamics of spin-1/21/2 and spin-11 particles. Our approach elegantly unifies the spin-vector dynamics from the T-BMT equation with the spin-tensor dynamics and other dynamics and suggests an avenue for addressing the question of the existence of the invariant spin field.Comment: Based on a presentation at Spin2014, The 21st International Symposium on Spin Physics, Beijing, China, October 2014. To be published in the International Journal of Modern Physics, Conference Serie

    Optimal Axes of Siberian Snakes for Polarized Proton Acceleration

    Full text link
    Accelerating polarized proton beams and storing them for many turns can lead to a loss of polarization when accelerating through energies where a spin rotation frequency is in resonance with orbit oscillation frequencies. First-order resonance effects can be avoided by installing Siberian Snakes in the ring, devices which rotate the spin by 180 degrees around the snake axis while not changing the beam's orbit significantly. For large rings, several Siberian Snakes are required. Here a criterion will be derived that allows to find an optimal choice of the snake axes. Rings with super-period four are analyzed in detail, and the HERA proton ring is used as an example for approximate four-fold symmetry. The proposed arrangement of Siberian Snakes matches their effects so that all spin-orbit coupling integrals vanish at all energies and therefore there is no first-order spin-orbit coupling at all for this choice, which I call snakes matching. It will be shown that in general at least eight Siberian Snakes are needed and that there are exactly four possibilities to arrange their axes. When the betatron phase advance between snakes is chosen suitably, four Siberian Snakes can be sufficient. To show that favorable choice of snakes have been found, polarized protons are tracked for part of HERA-p's acceleration cycle which shows that polarization is preserved best for the here proposed arrangement of Siberian Snakes.Comment: 14 pages, 16 figure

    Hemostatic function and progressing ischemic stroke: D-dimer predicts early clinical progression

    Get PDF
    <p><b>Background and Purpose:</b> Early clinical progression of ischemic stroke is common and is associated with increased risk of death and dependency. We hypothesized that activation of the coagulation system is an important contributor in some cases of deterioration. We aimed to characterize alterations in circulating hemostatic markers in patients with progressing stroke.</p> <p><b>Methods:</b> Consecutive acute ischemic stroke admissions were recruited. Progressing stroke was defined by deterioration in components of the Scandinavian Stroke Scale. Hemostatic markers (coagulation factors VIIc, VIIIc, and IXc, prothrombin fragments 1+2 [F1+2], thrombin-antithrombin complexes [TAT], D- dimer, fibrinogen, von Willebrand factor [vWF] and tissue plasminogen activator) were measured within 24 hours of symptom recognition.</p> <p><b>Results:</b> Fifty-four (25%) of the 219 patients met criteria for progressing stroke. F1+2 (median 1.28 versus 1.06 nmol/L, P=0.01), TAT (5.28 versus 4.07 mug/L, P lt 0.01), D-dimer ( 443 versus 194 ng/mL, P lt 0.001) and vWF (216 versus 198 IU/dL, P lt 0.05) levels were higher in these patients than in stable/improving patients. In logistic regression analysis, with all important clinical and laboratory variables included, only natural log D-dimer (odds ratio [OR]: 1.87; 95% confidence interval [CI]: 1.38 to 2.54; P=0.0001) and mean arterial blood pressure (OR: 1.26 per 10 mm Hg change; 95% CI: 1.05 to 1.51; P=0.01) remained independent predictors of progressing stroke.</p> <p><b>Conclusions:</b> There is evidence of excess thrombin generation and fibrin turnover in patients with progressing ischemic stroke. Measurement of D-dimer levels can identify patients at high risk for stroke progression. Further research is required to determine whether such patients benefit from acute interventions aimed at modifying hemostatic function.</p&gt

    Bubble Shape Oscillations and the Onset of Sonoluminescence

    Get PDF
    An air bubble trapped in water by an oscillating acoustic field undergoes either radial or nonspherical pulsations depending on the strength of the forcing pressure. Two different instability mechanisms (the Rayleigh--Taylor instability and parametric instability) cause deviations from sphericity. Distinguishing these mechanisms allows explanation of many features of recent experiments on sonoluminescence, and suggests methods for finding sonoluminescence in different parameter regimes.Comment: Phys. Rev. Lett., in pres
    • …
    corecore